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A quasi-chemical treatment of the superlattice formation model is applied to intermediate phases 
appearing in nonstoichiometric compounds. Two hinds of interaction energy are introduced and both 
the intermediate phase and two-phase separation are described in a single formula. The order 
parameter and the free energy are obtained as a function of temperature and composition. The 
boundaries of phases are determined by the common-tangent method. 

1. Introduction 

Intermediate phases appearing in non- 
stoichiometric compounds were treated 
statistically in a previous paper (I), using 
the model of superlattice formation. In that 
report, using a crude (Bragg-Williams) ap- 
proximation, it was shown that the ordered 
state which is supposed to occur at a cer- 
tain composition of a nonstoichiometric 
system breaks down rapidly with variation 
of the composition or of the chemical po- 
tential and that the appearance of the 
intermediate phase can be discussed as 
the composition-dependent order-disorder 
phase transition. However, the problem of 
the relative stability of the intermediate 
phase or the problem of the phase boundary 
is left unsolved in the previous paper. To 
obtain the phase boundary we must analyze 
both the intermediate phase and adjacent 
phase, which are usually separated by a 
miscibility gap in a nonstoichiometric bi- 
nary system, in a unified model. For this 
purpose we discuss in the present paper the 

statistical thermodynamics of the interme- 
diate phase using a quasi-chemical method 
applied to the superlattice formation model. 

The statistical behavior of nonstoi- 
chiometric systems with large deviations 
from stoichiometry have been discussed by 
Lather (2), Anderson (3), and Rees (4) on 
the basis of simplified assumptions, where 
only the nearest-neighbor interaction is 
taken into account and where defects are 
independent thermodynamically of the par- 
ent lattice of the compounds. In spite of the 
simplification, their results can explain well 
the critical miscibility phenomena observed 
in both types of nonstoichiometric com- 
pounds (interstitial and vacancy types) (5). 
In these models, attractive interactions be- 
tween defects (a negative interaction en- 
ergy) imply that defects tend to cluster and 
that biphasic separation occurs. On the 
other hand, a positive interaction energy 
between defects results in formation of the 
order of defects (4, 6, 7). Therefore it is 
clear that different kinds of energy should 
be introduced for treatment of biphasic 
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separation and ordering of defects in a 
single formulation. 

In the present paper we also adopt the 
simplified assumptions described above. In 
the case of intermediate phase, defects are 
distributed periodically and are incorpo- 
rated into the parent lattice, and the as- 
sumption that defects are independent ther- 
modynamically of the parent lattice may 
not be exactly valid. However, it is diEcult 
to form a “tight-binding” model where the 
breakdown of thermodynamical indepen- 
dence is emphasized, so the validity of 
independence is supposed, and the incorpo- 
ration is expressed in the present paper by 
the interaction energy of suljerlattice for- 
mation. 

2. Formulation of the Model 

Though the present treatment is applica- 
ble to both defective structures in glossy 
nonstoichiometric compounds-vacancies 
and interstitial atoms, we formulate the 
model in terms of interstitial atoms, which 
can be seen typically in the nonstoichiomet- 
tic compounds such as UOZ+l. We con- 
sider a hypothetical nonstoichiometric 
crystalline solid with the chemical formula 
MX2+, 9 where the excess atoms of the 
component X are distributed over the inter- 
stitial sites of the parent lattice MX,. The 
number of available interstitial sites per 
mole, N is assumed to be equal to that of 
MX,, as in U02+l. Hereafter we designate 
the occupied interstitial sites by A, and 
unoccupied sites by B. The number of 
occupied sites NA is equal to that of excess 
atoms Nx. The number of unoccupied sites 
is given by Ns = N( 1 - x). As we have 
discussed in the previous paper (I), this 
situation can be treated as the system of the 
solid solution composed of the component 
A and B. 

In the absence of the intermediate phase, 
the interaction between excess atoms is 
rather attractive and twophase separation 

occurs in usual binary nonstoichiometric 
systems, as we have described already. The 
interaction energy between defects is nega- 
tive. This can be translated in the AB 
system by putting the interaction energy as 

~1 = EAB - WAA + EBB). (1) 

where l 1 is positive, where EAA is the inter- 
action energy between neighboring excess 
atoms, EBB is the energy between neighbor- 
ing unoccupied sites and EAB is the energy 
between an excess atom and a neighboring 
unoccupied site. In these terms the interac- 
tion energy between unoccupied interstitial 
sites is physically meaningless and E,, 
should be put equal to zero in this case. 

Next, we consider that a superlattice is 
formed at a certain value of x. This value 
depends on the compounds. For instance, 
in U-O system, the most significant inter- 
mediate phase is U,O, and many other 
phases such as U20,, U,O,, and U,O,, are 
reported (8). Departing from the composi- 
tion and the detailed structure of existing 
intermediate phases, here we postulate that 
the superlattice formation occurs at the 
concentration x = 4, in order to avoid the 
complexity of the model. Referring to the 
model proposed previously (I), the excess 
atoms have a tendency to occupy the desig- 
nated sites (to be called (Y lattice) and the 
remaining sites (p lattice) are inclined to be 
unoccupied at this concentration. This can 
be achieved by introducing the order en- 
ergy l 2 (e2 < 0). The number of sites in the 
(Y and j3 lattices are given by N, = N/2 and 
No = N/2, respectively, for we have as- 
sumed that the intermediate phase occurs 
at x = 3. 

According to the assumption of thermo- 
dynamical independence of the defects of 
the parent lattice, the partition function of 
the whole system is written as 

-5, = W’PQU’I, (2) 

where K(T) is the partition function of the 
parent lattice, Q(T) is the vibrational parti- 
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tion function due to excess atoms, and Z is 
the configurational partition function of ex- 
cess atoms. In the following analysis we 
restrict our discussion within the treatment 
of Z and the related thermodynamic quanti- 
ties are calculated by using the modified 
quasi-chemical method. 

Application of the quasi-chemical 
method (9) to this problem is carried out as 
follows. Let us consider the distribution of 
excess atoms over the sites of the CI and p 
lattices. By using the order parameter, s, 
we have 

(Aa) = (N/2)(1 + s)x, (3) 

(Ba) = (N/2)(1 - (1 + s)x}, (4) 

(43) = (N/Xl - s)x, (5) 
and 

eq3) = (N/Xl - (1 - sb-1, (6) 

where (Aa) is the number of excess atoms 
in the (Y lattice, (Ba) the number of unoccu- 
pied sites in the (Y lattice, (A/3) the number 
of excess atoms in the p lattice, and (BP) 
the number of unoccupied sites in the p 
lattice. 

Now we count the number of pairs of 
neighboring sites in the four possible ways 
by using the parameter 8. When an cx site (a 
site in the CI lattice) is supposed to be 
surrounded by z p sites and when the 
number of total AB pairs is expressed by 
zN8, then 

(Ad@ = (z/Z)N(x - O), (7) 

obB@) = (z/Z)N(l - x - e), (8) 

(Acd3/3> = (z/Z)N(O + sx), (9) 

and 

(&A~) = (z/‘)N(8 - sx), (10) 

where (Ad@) is the number of pairs of 
excess atoms on (Y and p sites, (B&P) is 
the number of pairs of unoccupied (Y and p 
sites, (A&?/3> is the number of pairs of 
atoms on (Y sites and unoccupied p sites, 
and (&A/3) is the number of pairs of atoms 
on p sites and unoccupied CI sites. 

According to Takagi (JO, J 1) the number 
of distinguishable configurations is ob- 
tained by counting consistent combinations 
as 

where (ap) is the number of total pairs (a) = N, = N/2 and 
given by (p) = ND = N/2. (13) 

(~$3) = zN/’ (12) Substituting Eqs. (3)-(lo), and(12) and(13) 
and where into Eq. (1 I), we have 

A = {(z/‘)N(x - e)}!{(z/l)N(l - 
(zN/2)! 

x - e)}!{(z/Z)N(fl + sx)}!{(z/2)N(e - sx)}! 

x {(N/2)(x + ~x)}!{(N/2)(1 -x - sx)}! ‘-’ 
(N/W 1 

x {(N/2)(x - sx)}!{(N/Z)(l - x + XX)}! ‘-’ 
(N/2)! 1 . (14) 
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Using the relations NA = Nx and and 
NB = N( 1 - x), and putting ND = Nsx, (16) 

NC = Ntl (15) Eq. (14) can be rewritten as 

{(z/XNA + ND)}! 
{(z/Z)(N, - N,)}!{(z/2)(N, - N,))!{(z/WVc + ND)NW)WC - ND))! 

)l~%f$~,~- ND))! ‘-’ x #WA - ND)N~(NB + ND)}! ‘-’ 

B ! 1 [ {3(N, + ND)}! 1 ’ (14a) 
Here NC is the number of AB pairs (pairs of The semi-grand partition function of the 
occupied and unoccupied sites) divided by defects is obtained as the product of Eq. 
z, and ND is the difference in number of the (14a) and energy terms as follows. 
excess atoms between the CY and p sites. 

2 = x ~gW,,N,,N&‘d ew 
NC ND 

(-ZzF) exp (T) exp (-2p). (17) 

Here the term exp(-zN&,/2kT) is ne- 
glected, because EBB is zero as we have 
described already. In the usual formula of 
the quasi-chemical method the term exp 
(-zW$eJNkT) is not written. Either the 
ordered state or the case of two-phase 
separation is considered according to the 
positive or negative sign of l 1 in the usual 
treatment. The energy terms corresponding 
to the variables of both Nc (the number of 
pairs of occupied and unoccupied sites) and 
ND (which is related to the number of atoms 
in the superlattice sites) are included in Eq. 
(17) and by this formula we can treat the 
coexisting system of ordered phase and 
two-phase separation. 

In the calculation of Eq. (17), summation 
is equated to the maximum term. This 
equilibrium condition is obtained by the 
following differentiations. 

ah {AN,, NB, NC, ND) exp (q)} 

aNc 
= 0 (18) 

and 

a ln {&VA, NB, NC, No) ew (-2 )} 
aND 

= 0. (19) 

Using Eqs. (14a), (15), (16) and Stirling’s 
relation, Eqs. (18) and (19) are calculated as 

(X - e)(l - x - 0) = exp 26 
(e + s..q(e - SX) ( > kT (20) 

and 

4zsxcz 
kT 

+ z In ’ + ” e - sx 

(1 - SXl - x + sx) 
= (z - 1) ln (1 _ s)( 1 - x - sx)’ 

(21) 

These are the basic relations in the follow- 
ing analysis. 
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3. Order Parameter in r = x - 8, (27) 
TemperatureJZomposition Space Eq. (20) can be solved with respect to r in 

When we put the form, 

r= 
(3x + A - IxA) k ((2x + A - 3xAj2 - 4(1 - A)(1 - s~)x~)~‘~ 

2(1 - A) 1 (23) 

where A is given by 

As this analysis is restricted near the inter- 
mediate phase, the variable of concentra- 
tion x is replaced by neighborhood concen- 
tration 6 defined by 

6 = t - x, (25) 

the value of which is zero at the central 
concentration of the intermediate phase. 
The composition range of the intermediate 
phase is extremely narrow. For example, 
the width of the phase is about 0.02 in 
U,O,, which can be classified into rather 
wide range group (8). In many cases the 
width of the phase should be about 0.001. 
So we can assume 6 4 1. From the condi- 
tions that 1 > A > 0 and x( 1 - s) > r > 0, 
we adopt the negative sign in Eq. (23) and 
this is rewritten as 

where 

K 
(1 - 38)2 

’ = 1 - 2(1 - A@’ (77) 

q = (1 - (1 - A)& 1 - ,z))l/2, (28) 

and 

1 - 26 
K = 1 - 2(1 - A)% (29) 

As the value of 6 is extremely small (10A2- 
lo-+) and as the value of A is small 
(1 > A > 0)) K’ can be approximated in the 
form 

K’ - (1 - 46){1 + ?(l - A)6} 

- 1 - ‘(I + A)6 - 1 - ‘6. (30) 

Substituting Eqs. (22), (29, (26), and (30) 
into Eq. (21), we attain a final formula 
which designates the value of the order 
parameter s of the ordered phase near x = + 
(6 = 0), as a function of temperature T and 
concentration 6 as 

q+s z-2 In-=- - 
( > 

In 1 + ’ 
9-s 

+ (’ 9 ‘) lni 

l-s 
1 + [X%(1 - s)/(l + s)] 
1 + [38(1 -t s)/( 1 - s,] I 

2sq ‘tS&, - 

kT+- kT 7 c31) 

where q is given by Eq. (28). 
Let us examine Eq. (31) numerically for 

given values of z , E, and l 2 . c1 has the same 
physical meaning as the interaction energy 
between interstitial atoms, -Eii in the treat- 
ment by Anderson (3) and determines the 
critical miscibility temperature of two- 
phase separation. For the U-O system, 
with very high critical miscibility tempera- 
ture, this has been calculated as 5.03-5.56 
kcal/mole (12). For nonstoichiometric ox- 
ides with lower critical temperatures such 
as the Pr-0 system, l 1 may be obtained as 
about 1 kcal/mole. In order to clarify the 
influence of the intermediate phase on two- 
phase separation, we had better use a small 
value of c1 compared with that of e2. We put 
l 1 = 0.25 kcal/mole (this corresponds to 
the critical miscibility temperature about 
500 K) and e2 = -0.80 k&/mole. The coor- 
dination number z is given by 6, 8, and 12 
for simple cubic, body-centered, and face- 



centered structure, respectively. The es- From the relation NA = Nx and 
sential part of the result may not be affected NB = N(l - x) and Eqs. (14a), (15), and 
by these values of z. Here we use z = 8. (16) and using Stirling’s relation, we have 

The calculations were carried out by a 
FACOM 230-75 computer. The curve of s ln g*(x, S, 0) = (zN/Z){x - f?) In (x - 0) 

against Tat S = 0 coincides with that of the + (1 - x - 13) In (1 - x - 0) 
usual order-disorder phase transition with 
the critical temperature T, = 1060 K. The + (e + SX) In (e + XX) 

‘critical temperature decreases with increas- + (e - XX) In (e - SX)} 
ing absolute value of 6 as shown in Fig. 1. A 
set of solutions of Eq. (3 1) form a surface in + [(z - l)N/2]{x + sx) In (x + sx) 

S, T, 6 space. Another set of solutions + (x - sx) In (x - sx) 
designated by A in Fig. 1 appears, which 
seems to have no relation with the interme- + (1 - x + sx) In (1 - x + sx) 

diate phase in this case. +(I-x-.sx)ln(l-x-sx)}. (34) 

From Eqs. (32), (33), and (34), and referring 
4. The Boundary of the Ordered Phase the energy terms in Eq. (17), the free en- 

To determine the boundary of the or- 
ergy of the system is given by 

dered phase, one must compare the free G = G, + eoxN + l 1zNe + E~ZS~X~N 
energy of the ordered phase with that of 
adjacent phases. In the case of solid under + (zNkT/Z){(x - e) In (X - e) 

ordinary pressure, one can approximate the + (1 - x - e) In (1 - x - e) 
Gibbs free energy by 

+ (0 + SX) In (e + SX) 
G = -kTlnZ. (3’) 

+ (e - SX) In (e - SX)} 
Under the conditions expressed by Eqs. 
(20) and (21), summations in the partition + [(z - l)NkT/2]{x + sx) In (x + SX) 

function can be replaced by the maximum + (x -sx) In (x - SX) 
term g*(x, s, 0), so we have + (1 - x + sx) In (1 - x + sx) 

Z = g*(x, s, 0) X (energy terms). (33) + (1 - x - s-7) In (1 - x - sx)}, (35) 

where Go is the constant term and EOTN is 
the first-order term. 

T( 

FIG. 1. The order parameter s versus temperature T + (1 - x) In (1 - x)}. (36) 
and composition 6 near the composition where the 
intermediate phase appears. This equation coincides with that obtained 
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In the absence of the intermediate phase, 
two-phase separation occurs, the free en- 
ergy of which is obtained by putting s = 0 in 
Eq. (35) as 

G = Go + E,,xN + l 1zON + (zNkT/Z) 
{(x - e) In (X - e) + (1 - x - e) 

In (1 - x - e) + 28 In e} 
- (z - l)NkT{xlnx 
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by application of the usual quasi-chemical 
method to two-phase separation in the bi- 
nary solid solution or to the system of 
localized monolayers (9). Eqs . (35) and (36) 
can be calculated numerically by using the 
values of s and 8 which are obtained ac- 
cording to the treatment described already. 
For given temperatures the values of free 
energy are shown in Fig. 2 as a function of 
the compositionx. Here free energy when z 
= 8, eI = 0.25 kcal/mole, l 2 = -0.80 
kcal/mole is plotted for temperatures T = 
400 and 800 K. The term (G, + l ,,xN) in 
both equations is dropped here for conve- 
nience. The dotted line expresses the free 
energy in the absence of the intermediate 
phase. To determine phase boundaries we 
use the common-tangent method. Common 
tangents are also shown in the same figure. 

Thus determined phase-boundary com- 
position for each temperature is shown in 
the form of the phase diagram in Fig. 3, 
where the intermediate phase coexists with 
two-phase separation. The dotted line ex- 
presses the phase boundary of two-phase 

G(kcal/mol) 

0 

-08 E, ~0.25 kcalhnol 
E,:-080kcal/mol T=COOK 

0 

0 0.5 1 
-X 

FIG. 2. Free energy of the intermediate and adjacent 
phase as a function of composition x in MX,,,. To 
determine the phase boundaries, the common tangent 
is drawn. Dotted line indicates the free energy in the 
absence of the intermediate phase. 

FIG. 3. Phase diagram of the intermediate and 
adjacent phases for interaction energies, c1 = 0.25 
k&mole and e2 = -0.80 kcal/mole. Dotted line 
expresses two-phase separation in the absence of the 
intermediate phase. 

separation in the absence of the intermedi- 
ate phase. One can recognize that occur- 
rence of the intermediate phase influences 
the boundaries of the adjacent phases. The 
width of the intermediate phase is found to 
be extremely narrow and is scarcely depen- 
dent upon the order energy l Z. The value of 
e2 determines rather the high-temperature 
limit of the boundary of the ordered phase. 
The limiting temperature is about 980 K in 
this case. This is slightly lower than the 
critical temperature T, = 1060 K as de- 
scribed in the previous section. 

Minimum values of free energy for var- 
ious values of the interaction energy l 2 are 
shown in Fig. 4 as a function of tempera- 
ture. The dotted line indicates the minimum 
values of free energy of two-phase separa- 
tion in the absence of the intermediate 
phase. The intermediate phase appears in 
the phase diagram when its minimum value 
of free energy locates in lower position than 
the dotted line in the figure. For l 1 = 0.25 
kcal/mole, the absolute value of Ed is neces- 
sary to be larger than 0.50 kcal/mole for 
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0 

-01 

z-02 

E 
0 -0.3 

E 
2-o 

I I 
-a5 

- T(K) 

FIG. 4. The minimum values of free energy for 
various order energies of the intermediate phases. 
Dotted line is the minimum value of free energy of 
two-phase separation with e1 = 0.25 k&/mole. 

occurrence of the intermediate phase. In 
general this condition is given by l z > - 2~~. 

5. Chemical Potential and Related 
Quantities 

In the previous paper (I) it was pointed 
out that the differentiation of the chemical 
potential with respect tox has a singularity 
at the intermediate phase. Let us examine 
this relation in this treatment. The chemical 
potential of the system is obtained by 

We have recognized that parameter s and 
8 are determined by designating x and T. 

So differentiation of G in Eq. (35) is car- 
ried out by considering that s and 8 are 
functions of x. Rearranging the result by 
using Eqs. (20) and (21), we have 

zNkT 
/L=E~N+~ 

In x-e (z - I)NkT 
1-x4+ 2 

(x + $X)(X - sx) 
ln(l -x+sx)(l -x-sxj (38) 

Next we examine the function 

Carrying out the differentiation we have 

1 + 8’ 
+1-x4 

+ (z - l)NkT 1 +s +s’x 
2 (x + sx)( 1 - x - sx) 

+ (x -$ 7 ;: sx) I ’ (40) 

where 

8’ = a8 

ax and S’ = as. 

ax (41) 

Function 6 which one may call the 
“chemical susceptibility” from thermody- 
namic considerations, can be divided into 
two parts. The first terms are related to 
biphasic separation, and the last two are 
related to the intermediate phase. The latter 
is rewritten as 

~ 
2 

= (z - I)NkT{x(l - x) + s2x(1 + x) + s’.sx2(1 + 2x)). 
x2(1 + s)(l - s)(l - x - sx)(l - x + sx) (42) 

The feature of this function near x = & is may propose an important key in the treat- 
shown in Fig. 5. When x approaches +, s’ ment of the intermediate phase as a concen- 
becomes zero and s becomes I at T = 400 tration-dependent phase transition. 
K. t2 becomes infinite in the order of (a + 
s2)/(1 - s~)~, where a is a constant. At 6. Conclusion 
higher temperature such as T = 800 K, t2 
increases enormously and attains a large Using the superlattice formation model 
value as 10s. This feature of the function c2 of the intermediate phase, the order param- 
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&=OXkcal/mol 
CT.-08Okcal/mol 

FIG. 5. Singularity of function c2 in the case of the 
intermediate-phase occurrence. 

eter and the free energy are calculated 
numerically for given values of z, el, and 
ep. The phase boundary is determined for 
the intermediate phase and adjacent 
phases. As the calculation was carried out 
in order to obtain the general feature of the 
model, the values of z, l 1, and l 2 do not 
necessarily coincide with those of existing 
phases. The model may be applicable to 
existing phases by some alternations in 
these points. The most significant difference 
between the model and existing phases is 
the number of “molecules” contained in a 
unit cell. In the present model simple struc- 
ture is postulated and the unit cell contains 
one MJ,. On the other hand, in U,O,, for 
instance, the unit cell is proposed to con- 
tain 64 U,O, “molecules” (1345). The 
formation of the superlattice with a compli- 
cated structure as in U,O, can be described 
by the cluster formation and ordering of the 
clusters as has been pointed out in the 
previous paper (I ). 

In spite of this ditference the result of this 
treatment agrees well with the feature of 
the existing intermediate phases. The width 
of the intermediate phase is extremely nar- 
row and is scarcely affected by the magni- 

tude of the order energy ep. The value of e2 
determines the high-temperature limit of 
the intermediate phase. The complicated 
feature of the phase diagram containing 
intermediate phases might be explained by 
our conclusion that occurrence of interme- 
diate phases affects the boundaries of adja- 
cent phases and shift them in a large scale. 
Some problems such as origin of ordering 
energy and selection of the composition 
where the intermediate phase occurs are 
left unsolved in the present paper. 
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